Stampa la pagina Condividi su Google Condividi su Twitter Condividi su Facebook Scheda Docente

LACITIGNOLA DEBORAH - Professore Associato

English version

Afferente a: Dipartimento: Ingegneria Elettrica e dell'Informazione "Maurizio Scarano"

Settore Scientifico Disciplinare: MAT/07

Orari di ricevimento: Sempre possibile, previo appuntamento via email

Recapiti:
Telefono: Dati

  • Insegnamento METODI E MODELLI MATEMATICI PER L'INGEGNERIA GESTIONALE (91215)

    Primo anno di Ingegneria Gestionale (LM-31), Curriculum unico
    Crediti Formativi Universitari (CFU): 6,00

    Programma:
    Introduzione al corso. L’approccio modellistico e sua applicazione ai problemi di decisione. Elementi di modellistica matematica. Il problema di pianificazione degli investimenti come problema di programmazione matematica. Generalità sui problemi programmazione. L’approccio ottimizzatorio. Classificazione dei problemi di ottimizzazione. Problemi di ottimizzazione per funzioni reali di più variabili reali. Ricerca di estremi liberi (condizioni necessarie del primo ordine; forme quadratiche: classificazione, test degli autovalori, studio dei punti critici; ottimizzazione di funzioni convesse e concave) . Ricerca di estremi vincolati: vincoli di uguaglianza e moltiplicatori di Lagrange; vincoli di disuguaglianza e Teorema di Kuhn-Tucker. Casi di studio. Programmazione lineare. Introduzione al metodo del simplesso. Algoritmo del simplesso e sue applicazioni. Teoria della dualità. Tipi speciali di problemi di programmazione lineare: il problema del trasporto.

    Testi:
    Appunti dalle lezioni. Per ulteriori approfondimenti sugli argomenti in programma si consigliano i
    testi:
    - F. S. Hillier, G.J. Lieberman. Introduzione alla ricerca operativa - Franco Angeli, 1999.
    - P. Serafini. Ricerca operativa - Springer Verlag , 2009.

    Valutazione:
    Obiettivi delle prove d'esame:
    il progetto di fine corso è strutturato in modo tale da verificare che lo studente abbia acquisito la capacità di (a) derivare - a partire da problemi pratici relativi a situazioni gestionali concrete - il relativo modello matematico di ottimizzazione; (b) scegliere, tra le diverse tecniche a disposizione, la strategia di soluzione più adatta al problema matematico in questione (c) intepretare la soluzione matematica del problema alla luce del problema gestionale di partenza (d) fornire una risposta precisa in termini decisionali.
    La prova orale è invece una verifica del livello di consapevolezza generale raggiunto dallo studente sulla derivazione e implementazione delle tecniche modellizzazione, di soluzione e di calcolo usate nel progetto e mira ad evidenziare la reale padronanza dell'argomento anche a livello teorico.

    Modalità di esecuzione delle prove d'esame:
    ogni progetto, assegnato nell'ultima settimana di lezione, è pensato per gruppi di 3 studenti al fine di testare e favorire le capacità degli studenti di lavorare in team e per obiettivi. Si tratta di un problema di natura gestionale relativo ad una situazione reale di cui si chiede la modellizzazione in termini matematici, la soluzione con tutte le tecniche introdotte durante il corso (anche con l'ausilio di software dedicati) e l'indicazione precisa della strategia in in termini gestionali. Completa il progetto una riflessione generale sui metodi di soluzione utilizzati al fine di individuare quello più adatto a risolvere il problema gestionale assegnato. La parte orale, della durata indicativa di 30 minuti, prevede almeno 2 domande (una relativa alle tecniche analitiche ed una relativa al metodo del simplesso)

    Modalità di valutazione delle prove d'esame:
    al progetto si assegna una valutazione da A ad E (A: da 28/30 a 30/30; B: da 25/30 a 27/30; C: da 22/30 a 24/30; D: da 18/30 a 21/30; E: < 18/30). Il voto finale viene attribuito pesando adeguatamente la valutazione del progetto e della prova orale.

    Tempistica delle prove d'esame: un documento inerente il completo svolgimento del progetto viene inviato da ogni gruppo al docente circa tre giorni prima della presentazione orale dello stesso; il progetto viene poi presentato oralmente da tutti i gruppi nel "MeMoMatDay", giorno dedicato alla discussione e confronto di tutti i progetti che viene fissato circa dieci giorni dopo il termine delle lezioni. In questo stesso giorno è possibile (ed è consigliato) sostenere anche la prova orale che, eventualmente, si può sostenere anche nell'appello successivo.

  • Insegnamento ANALISI MATEMATICA II (92354)

    Primo anno di Ingegneria industriale FROSINONE (L-9), Gestionale
    Crediti Formativi Universitari (CFU): 12,00

    Programma:
    Matrici e Determinanti. Sistemi Lineari. Nozioni sugli spazi vettoriali. Spazi vettoriali euclidei. Elementi di geometria analitica nello spazio. Calcolo differenziale per funzioni di due variabili. Modelli matematici di ottimizzazione: semplici esempi di applicazioni. Equazioni differenziali ordinarie. Teoria qualitativa delle equazioni differenziali. Esempi di applicazione di modelli differenziali. Integrali curvilinei e di superficie.

    Testi:
    - M. Bramanti, C.D. Pagani, S. Salsa - Matematica Calcolo Infinitesimale e Algebra Lineare, Zanichelli, Bologna, 2004 (capitoli: 2, 7, 9, 10, 11, 12, 13)
    - E. Schlesinger - Algebra Lineare e Geometria, Zanichelli, Bologna 2011
    - L.Mauri, E.Schlesinger - Esercizi di Algebra Lineare e Geometria, Zanichelli, Bologna 2013
    - M. Bramanti, C.D. Pagani, S. Salsa - Analisi Matematica 2, Zanichelli, Bologna, 2009
    - S. Salsa, A. Squellati - Esercizi di Analisi Matematica 2, Zanichelli, Bologna 2011
    - P. Marcellini, C. Sbordone - Esercitazioni di Analisi matematica Due (Prima parte-Seconda parte) - Zanichelli, 2017

    Valutazione:
    Obiettivi delle prove d'esame:
    la prova scritta è strutturata in modo tale da verificare che lo studente abbia acquisito (a) la capacità di individuare la migliore strategia per la soluzione di esercizi e problemi (b) la necessaria conoscenza delle diverse tecniche di soluzione (c) la necessaria padronanza nell'esecuzione dei calcoli.
    La prova orale è invece una verifica del livello di consapevolezza generale raggiunto dallo studente sulla derivazione e implementazione delle tecniche di soluzione e di calcolo usate nella prova scritta e mira ad evidenziare la reale padronanza dell'argomento anche a livello teorico.

    Modalità di esecuzione delle prove d'esame:
    la prova scritta, della durata indicativa di 2 ore, consta di quattro esercizi (uno relativo alla parte di Geometria ed Algebra Lineare e tre inerenti alla parte più propriamente di Analisi Matematica) . La parte orale, della durata indicativa di 30 minuti, prevede almeno 2 domande (una relativa alla parte di Geometria ed Algebra Lineare e l'altra relativa alla parte più propriamente di Analisi Matematica)

    Modalità di valutazione delle prove d'esame:
    la prova scritta si intende superata se la votazione raggiunta è maggiore o uguale a 18/30. Il voto finale viene attribuito pesando adeguatamente la valutazione della prova scritta e della prova orale.

    Tempistica delle prove d'esame: la prova orale viene svolta entro una settimana dalla prova scritta

Prenotazione appello

E' possibile prenotarsi ad un appello d'esame, collegandosi al portale studenti.

Elenco appelli d'esame disponibili

  • Denominazione insegnamento: 30002 ANALISI MATEMATICA II - Ingegneria industriale 90329 ANALISI MATEMATICA II - Ingegneria industriale 90329 ANALISI MATEMATICA II - Ingegneria industriale FROSINONE - Piazza Marzi 1 03100 30002 ANALISI MATEMATICA II - Ingegneria dell'Ambiente e del Territorio 30002 ANALISI MATEMATICA II - INGEGNERIA DELL'AMBIENTE E DEL TERRITORIO 30002 ANALISI MATEMATICA II - INGEGNERIA CIVILE E AMBIENTALE 30002 ANALISI MATEMATICA II - Ingegneria civile e ambientale - Frosinone 90329 ANALISI MATEMATICA II NESSUNA CANALIZZAZIONE - Ingegneria industriale FROSINONE - Piazza Marzi 1 03100 92354 ANALISI MATEMATICA II - Ingegneria industriale FROSINONE - (2019/2020)
    Data e ora appello: 13/07/2020, ore 09:00
    Luogo: Aula Google Classroom
    Tipo prova: prova scritta
    Prenotabile: dal 19/11/2019 al 12/07/2020 (prenota l'appello)
  • Denominazione insegnamento: 30002 ANALISI MATEMATICA II - Ingegneria industriale 90329 ANALISI MATEMATICA II - Ingegneria industriale 90329 ANALISI MATEMATICA II - Ingegneria industriale FROSINONE - Piazza Marzi 1 03100 30002 ANALISI MATEMATICA II - Ingegneria dell'Ambiente e del Territorio 30002 ANALISI MATEMATICA II - INGEGNERIA DELL'AMBIENTE E DEL TERRITORIO 30002 ANALISI MATEMATICA II - INGEGNERIA CIVILE E AMBIENTALE 30002 ANALISI MATEMATICA II - Ingegneria civile e ambientale - Frosinone 90329 ANALISI MATEMATICA II NESSUNA CANALIZZAZIONE - Ingegneria industriale FROSINONE - Piazza Marzi 1 03100 92354 ANALISI MATEMATICA II - Ingegneria industriale FROSINONE - (2019/2020)
    Data e ora appello: 10/09/2020, ore 10:00
    Luogo: Aula 1.1 FR
    Tipo prova: prova scritta
    Prenotabile: dal 19/11/2019 al 09/09/2020 (prenota l'appello)
  • Denominazione insegnamento: 91215 METODI E MODELLI MATEMATICI PER L'INGEGNERIA GESTIONALE - Ingegneria Gestionale - (2019/2020)
    Data e ora appello: 14/09/2020, ore 10:00
    Luogo: Aula 3.3 FR
    Tipo prova: prova orale
    Prenotabile: dal 18/10/2019 al 13/09/2020 (prenota l'appello)

Ricercatore universitario presso la Facoltà di ScienzeMM.FF.NN dell’Università degli Studi di Lecce.
Settore Scientifico Disciplinare: MAT07 (dall’1 ottobre 2001 al 15 dicembre 2009).

Ricercatore universitario, presso il Dipartimento di Ingegneria Elettrica e
dell’Informazione dell’Università degli Studi di Cassino e del Lazio Maridionale (dal 16 dicembre 2009 al 2 febbraio 2020)
Settore Scientifico Disciplinare: MAT07.

Attualmente è Professore Associato presso il Dipartimento di Ingegneria Elettrica e dell’Informazione dell’Università degli Studi di Cassino e del Lazio Maridionale.
Settore Scientifico Disciplinare: MAT07.

Abilitata come Professore Ordinario in Fisica Matematica (MAT07) - ASN2012 e ASN2016

Membro del Gruppo Nazionale della Fisica Matematica (GNFM) dal Gennaio 1999
Membro dell'European Society for Mathematical and Theoretical Biology (ESMTB).

Referee per le principali riviste di Matematica Applicata, in relazione alle tematiche proprie della Fisica Matematica e dei Sistemi Dinamici.


Progetti Scientifici

• Progetto Giovani Ricercatori (a.a. 2001/2002), finanziato dall’Università di Lecce,
dal titolo: “Sistemi Dinamici non Lineari per lo Studio di Fenomeni Medici e Biologici”;
responsabile: D. Lacitignola (Università di Lecce)
• 2003-2005 PRIN MIUR: “Problemi Matematici Non Lineari di Propagazione e Stabilità
nei modelli del Continuo”; coordinatore nazionale: T. Ruggeri (Università di Bologna)
• PRIN 2004-2005: “M2xD2 - Modelli Matematici per la Dinamica del DNA”;
coordinatore nazionale: G. Saccomandi (Università di Lecce)
• 2005-2007 PRIN MIUR: “Problemi Matematici Non Lineari di Propagazione
e Stabilità nei modelli del Continuo”; coordinatore nazionale: T. Ruggeri (Università di Bologna)
• Progetto Giovani Ricercatori (a.a. 2007/2008) finanziato dal GNFM,
dal titolo: “Analisi di due recenti metodi per la stabilità ed applicazioni
a modelli ODE e PDE in dinamica delle popolazioni”; componente
• Progetto Giovani Ricercatori (a.a. 2008/2009) finanziato dal GNFM, dal titolo:
“Dinamica di sistemi complessi, con applicazioni in Biologia ed Economia”; componente
• Progetto Giovani Ricercatori (a.a. 2011/2012) finanziato dal GNFM, dal titolo:
“Analisi e Controllo di Processi di Diffusione”; componente
• Progetto Giovani Ricercatori (a.a. 2014/2015) finanziato dal GNFM, dal titolo: “Analisi e controllo
di strutture morfologiche spaziali in modelli di tipo reazione-diffusione con applicazioni industriali”; responsabile: D.Lacitignola (Università di Cassino e del Lazio Meridionale)
• Progetto Giovani Ricercatori (a.a. 2015/2016) finanziato dal GNFM, dal titolo: “Formazione di Pattern, insorgenza di fenomeni oscillatori e soluzioni localizzate in sistemi reazione-diffusione con diffusione nonlineare ”; componente
• Adesione al H2020 project ‘ECOPOTENTIAL: Improving Future Ecosystem Benefits Through Earth Observations’ (2016/2017), coordinated by CNR-IGG (http://www.ecopotential-project.eu), grant agreement No 641762.
• 2017-2020 PRIN MIUR: "Mathematics of active materials: From mechanobiology to smart devices";
coordinatore nazionale: Luigi Preziosi (Università di Torino)

Esperienze Organizzative
• Membro del Comitato Organizzatore del Convegno “New Trends in Mathematical Physics in memory of P.Benvenuti”- Gallipoli, 23/25 Settembre 2004.
• Membro del Comitato Scientifico ed Organizzatore del Convegno “DNA, Matematica e Meccanica”-
Lecce, 26/28 Maggio 2005.
• Membro del Comitato Organizzatore del Convegno “XVI Conference on Waves and Stability in
Continuous Media - WASCOM 2011”- Brindisi, 11/18 Giugno 2011.

Attuali Campi di Ricerca

- Matematica applicata
- Sistemi dinamici non lineari e applicazioni in ambito ecologico ed ambientale
- Teoria delle biforcazioni e teoria del caos
- Instabilità diffusiva, pattern formation e fenomeni di propagazione ondosa in modelli di tipo reazione-diffusione con applicazioni in chimica ed in biologia

Recenti attività scientifiche

Le recenti attività scientifiche sono state incentrate sulla modellistica di tipo reazione-diffusione con applicazioni chimiche, biologiche ed ambientali con l’obiettivo di studiare e caratterizzazione i diversi meccanismi responsabili della pattern formation. Attenzione particolare è stata data all’insorgenza di eterogeneità spaziale dovuta ad instabilità diffusiva; alle dinamiche spazio-temporali associate alle biforcazioni di Turing e di Hopf; all’insorgere di pattern oscillanti; alla caratterizzazione e validazione sperimentale dell'insorgenza di spiral waves in elettrochimica dei metalli. Ci si è occupati inoltre di modelli matematici con applicazioni ecologiche per la gestione e la conservazione di specie protette


68. D. Lacitignola, I. Sgura, B. Bozzini, T. Dobrovolska, I. Krastev, "Spiral waves on the sphere for an alloy electrodeposition model", Communications in Nonlinear Science and Numerical Simulation, vol. 79, 104930, 2019

67. C. M. Baker, F. Diele, D. Lacitignola, C. Marangi, A. Martiradonna, "Optimal control of invasive species through a dynamical systems approach", Nonlinear Analysis: Real World Applications, vol. 49, 45-70, 2019

66. D.Lacitignola, F. Diele, "On the Z-type control of backward bifurcations in epidemic models", Mathematical Biosciences, vol. 315, 108215, 2019

65. D. Lacitignola, "Bifurcations of equilibria in a mathematical model for metal growth", Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, vol. 96, 2018

64. D. Lacitignola, B. Bozzini, R. Peipmann, I. Sgura, "Cross-diffusion effects on a morphochemical model for electrodeposition", Applied Mathematical Modelling, vol. 57, 492-513, 2018

63. D. Lacitignola, B. Bozzini, M. Frittelli, I. Sgura, "Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition", Commun. Nonlinear. Sci. Numer. Simulat., vol. 48, 484–508, 2017.

62. D. Lacitignola, "The Mathematical Beauty of Nature and Turing Pattern Formation", Matematica, Cultura e Società - Rivista dell'Unione Matematica Italiana, Serie I, vol. 1(2), 2016 (invited).

61. D. Lacitignola, F. Diele, C. Marangi, A.Provenzale, "On the dynamics of a generalized predator–prey system with Z-type control", Mathematical Biosciences, vol. 280, 10–23, 2016.

60. B.Bozzini, G.Gambino, D.Lacitignola, S.Lupo, M.Sammartino, I.Sgura, "Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth", Computers and Mathematics with Applications, 70(8), 1948--1969, 2015

59. B. Bozzini, M. Amati, L. Gregoratti, D. Lacitignola, I. Sgura, I. Krastev, Ts. Dobrovolska, "Intermetallics as key to spiral formation in In-Co electrodeposition. A study based on photoelectron microspectroscopy, mathematical modelling and numerical approximations",
Journal of Physics D: Applied Physics, 48(39), 395502, 2015

58. D. Lacitignola, F. Diele, C. Marangi, "Dynamical scenarios from a two-patch predator-prey system with human control - Implications for the conservation of the wolf in the Alta Murgia National Park", Ecological Modelling, vol. 316, 28-40, 2015.

57. A. Gianoncelli, I. Sgura, P. Bocchetta, D. Lacitignola, B. Bozzini, "High-lateral resolution X-ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts", X-Ray Spectrom., vol. 44(4), 263–275, 2015.

56. D. Lacitignola, B. Bozzini, I. Sgura, "Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay", European Journal of Applied Mathematics, vol. 26(2), 143-173, 2015.

55. D. Lacitignola, B. Bozzini, I. Sgura, "Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves", Acta Applicandae Matematicae, vol. 132, 377–389, 2014.

54. L. Fattorini, D. Lacitignola, "Functionality indexes assessed through a simple model of muscle activation, fatigue and recovery", Int. J. Biomath., vol. 7(2), 1450022, 2014.

53. D. Lacitignola, G. Saccomandi, I. Sgura, "Parametric resonance in a mesoscopic discrete DNA model", Acta Applicandae Matematicae, vol. 132, 391–404, 2014.

52. D. Lacitignola, G. Saccomandi, "Parametric resonance in DNA", Bulletin of Mathematical Biology, vol. 76(3), 515-540, 2014.

51. B. Buonomo, D. Lacitignola, C. Vargas-De-Leon: Qualitative analysis and optimal control of an epidemic model with vaccination and treatment. Math. Comput. Simul., vol. 100, 88-102, 2014.

50. B. Buonomo, D. Lacitignola, "Modeling peer influence effects on the spread of high-risk alcohol consumption behavior", Ricerche di Matematica, vol. 63(1), 101-117, 2014.

49. D. Lacitignola, "Saturated treatments and measles resurgence episodes in South Africa: a possible linkage", Mathematical Biosciences and Engineering, vol. 10(4), 1135-1157, 2013.

48. B.Buonomo, A. D'Onofrio, D.Lacitignola, "Modeling of pseudo-rational exemption to vaccination for SEIR diseases", Journal of Mathematical Analysis and Applications, vol. 404(2), 385--398, 2013.

47. B.Bozzini, D.Lacitignola, I.Sgura, "Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation", J. Solid State Electrochem., vol. 17(2), 467-479, 2013.

46. B.Buonomo, A. D'Onofrio, D.Lacitignola, "The geometric approach to global stability in behavioral epidemiology", in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, 289-308, Springer, 2013.

45. I.Sgura, B.Bozzini, D.Lacitignola, "Numerical approximation of oscillating Turing patterns in a reaction-diffusion model for electrochemical materia growth". AIP Conference Proceedings. vol. 1493, 896-903, 2012.

44. A.Q.Lucciola, C.Cortis, D.Lacitignola, P.Mondini, A.Rodio, "Evaluation Spatio-Temporal Gait Parameters with and without a maternity support for treatment of low back pain in pregnancy", Sport Sci. Health 8 (Suppl 1):S1-S70, 13, 2012.

43. B.Buonomo, D.Lacitignola, "Forces of infection allowing for backward bifurcation in an epidemic model with vaccination and treatment", Acta Applicandae Mathematicae, vol. 122(1), 283-293, 2012.

42. B.Bozzini, D.Lacitignola, C.Mele, I.Sgura, "Coupling of Morphology and Chemistry Leads to Morphogenesis in Electrochemical Metal Growth: a Review of the Reaction-Diffusion Approach", Acta Applicandae Mathematicae, vol. 122 (1), 53-68, 2012.

41. D.Lacitignola, G.Saccomandi, "An anomalous feature in a semi-inverse solution of a simple model of non-Newtonian fluid mechanics", International Journal of Engineering Science, vol. 60, 94-98, 2012.

40. I.Sgura, B.Bozzini, D.Lacitignola, "Numerical approximation of Turing patterns in electrodeposition by ADI methods", Journal of Computational and Applied Mathematics, vol. 236, 4132-4147, 2012.

39. B.Bozzini, D.Lacitignola, C.Mele, I.Sgura, "Morphogenesis in metal electrodeposition", Note di Matematica, vol.32, 7-46, 2012

38. B. Buonomo, A. D'Onofrio, D. Lacitignola, "Globally stable endemicity for infectious diseases with information-related changes in contact patterns", Applied Mathematics Letters, vol. 25, 1056-1060, 2012

37. B.Bozzini, D.Lacitignola, I. Sgura, "Ripple Effect: levelling of electrodeposits can be achieved by applying a small forcing voltage" in Products Finishing Magazine, 3/2012, Gardner Publications Inc., Cincinnati, Ohio (USA) - http://www.pfonline.com/articles/

36. B.Bozzini, D.Lacitignola, I. Sgura, "Frequency as the greenest additive for metal plating: mathematical and experimental study of forcing voltage effects on electrochemical growth dynamics" in International Journal of Electrochemical Science, Int. J. Electrochem. Sci., vol.6, 4553 - 4571, 2011

35. B. Buonomo, D. Lacitignola, "On the backward bifurcation of a vaccination model with non-linear incidence" in Nonlinear Analysis: Modelling and Control, vol.16, 30-46, 2011.

34. B. Bozzini, D. Lacitignola, I. Sgura, "Travelling waves in a reaction-diffusion model for electrodeposition", in Math. Comput. Simul., vol. 81, 1027–1044, 2011.

33. B. Buonomo, D. Lacitignola, "Global stability for a four dimensional epidemic model" in Not. Mat., vol. 30, 81-93, 2010.

32. D. Lacitignola, "¿Cuales son las matemáticas de Darwin?" in Matematicalia, ISSN: 1699-7700, vol.6, n.2, 2010.

31. B. Bozzini, I. Sgura, D. Lacitignola, C. Mele, M. Marchitto, A. Ciliberto, "Prediction of Morphological Properties of Smart-Coatings for Cr Replacement, Based on Mathematical Modelling" in Advanced Materials Research, vol. 138, 93-106, 2010.

30. B. Buonomo, D. Lacitignola, "Analysis of a tuberculosis model with a case study in Uganda" in Journal of Biological Dynamics, 4, n. 6, 571-593, 2010.

29. B. Buonomo, D.Lacitignola, "On the geometric approach to global stability for some three and four dimensional epidemic systems", in Proceed. Waves and Stability in Continuous Media, World Scientific Publishing, River Edge, NJ, 46-51 2010.

28. B. Bozzini, D. Lacitignola, I. Sgura, "Morphological spatial patterns in a reaction diffusion model for metal growth", in Mathematical Biosciences and Engineering, 7, 237-257, 2010.

27. B. Buonomo, A. D'Onofrio, D. Lacitignola, Rational exemption to vaccination for non-fatal SIS diseases: globally stable and oscillatory endemicity, Mathematical Biosciences and Engineering, 7, 561-578, 2010.

26. D. Lacitignola, I. Petrosillo, G. Zurlini, "Time dependent regimes of a tourism-based social-ecological system: period-doubling route to chaos" in Ecological Complexity, 7, 44-54, 2010.

25. B. Buonomo, D. Lacitignola, S. Rionero, "Effect of prey growth and predator cannibalism rate on the stability of a structured population model" in Nonlinear Analysis: Real World Applications, 11, 1170-1181, 2010.

24. B.Bozzini, L.D'Urzo, D.Lacitignola, C.Mele, I.Sgura, E.Tondo, "An investigation into the dynamics of Au electrodeposition based on the analysis of SERS spectral time series" in Transactions of the Institute of Metal Finishing, 87, 193-200, 2009.

23. B.Buonomo, D. Lacitignola, "On the dynamics of an SEIR epidemic model with a convex incidence rate" in Ricerche Mat., 57, 261-281, 2008.

22. B.Buonomo, A. D'Onofrio, D. Lacitignola, "Global stability results for a SIR model with information dependent vaccination" in Math. Biosci., 216, 9-16, 2008 (awarded by Elsevier Publishing as MATHEMATICAL BIOSCIENCES TOP CITED ARTICLE 2008-2010).

21. B.Buonomo, D. Lacitignola, "On the use of the geometric approach to global stability for three dimensional ODE systems: a bilinear case" J. Math. Anal. Appl., 348, 255-266, 2008.

20. B.Bozzini., D.Lacitignola, I.Sgura, "A Reaction-Diffusion Model of Spatial Pattern Formation in Electrodeposition" in Journal of Physics. Conference Series. ISND 2007, 96, Shanghai, China, 2008.

19. B.Bozzini, D.Lacitignola, I.Sgura, "Turing Instability in an Electrodeposition Morphogenesis Model: An Analytical, Numerical and Experimental Study" in Proceed. of the International Conference on Computational Methods in Science and Engineering , 963, 465-468, 2007.

18. B.Buonomo, D.Lacitignola, "On the global dynamics of some relevant bilinear models" in Proceed. Waves and Stability in Continuous Media, World Scientific Publishing, River Edge, NJ, 2007.

17. D.Lacitignola, I. Petrosillo, M.Cataldi, G.Zurlini, "Modelling Socio-Ecological Tourism-Based Systems for Sustainability"- Ecological Modelling, 206, pp. 191-204, 2007.

16. D.Lacitignola, C.Tebaldi, "Complex Features in Lotka-Volterra Systems with Behavioral Adaptation" in Unifying Themes in Complex Systems, Editors Ali Minai, Dan Braha, Yaneer Bar-Yam, Springer, 2006.

15. B.Buonomo, D. Lacitignola, "On the Stabilizing Effect of Cannibalism in Stage Structured Population Models" in Mathematical Biosciences and Engineering, 3, n.4. pp. 717-731, 2006.

14. D.Lacitignola, C.Tebaldi, "Chaotic Patterns in Lotka-Volterra Systems with Behavioral Adaptation" in Proceed. Waves and Stability in Continuous Media, World Scientific Publishing, River Edge, NJ, 310-315, 2006.

13. D.Lacitignola, C.Tebaldi, "Complex Behavior in System with Adaptation" in Complexity, reality or chimera?, Cerrai P. (ed), Proceed. of Arcidosso International Workshop, Esculapio Editions, 2005.

12. D.Lacitignola, C.Tebaldi, “Effects of ecological differentiation on Lotka-Volterra systems for species with behavioral adaptation and variable growth rates ” Mathematical Biosciences Vol. 194, N.1, 95-123, 2005.

11. B.Buonomo, D.Lacitignola, “New sufficient conditions for global stability of a basic model describing population growth in a polluted environment ” – Proceedings of Dynamic Systems and Applications 4, 53-57, 2004.

10. B.Buonomo, D.Lacitignola, “General conditions for global stability in a single species population-toxicant model” - Nonlinear Analysis: Real World Applications 5, 749-762, 2004

9. D.Lacitignola, C.Tebaldi, “Effects of Adaptation on Competition among Species” in “New Trends in Mathematical Physics”, World Scientific, Singapore - 219-233, 2004.

8. D.Lacitignola, A. LaNotte, “Bifurcation in a stock market experiment” in “Economics Lab: An Intensive Course in Experimental Economics” (by D.Freedman and A. Cassar with the contribution of R.Selten et al. ), 179-187, 2004.

7. D.Lacitignola, C.Tebaldi, “n-species competitive Lotka-Volterra systems with adaptation” in “Mathematical Modelling & Computing in Biology and Medicine”, Esculapio Pub. Co., Bologna – 295-302 , 2003.

6. D.Lacitignola, C.Tebaldi, “Symmetry Breaking Effects on Equilibria and Time Dependent Regimes in Adaptive Lotka -Volterra Systems”- International Journal of Bifurcation and Chaos, Vol. 13 N.2 , 375-392, 2003.

5. D.Lacitignola, C.Tebaldi, “Symmetry Breaking Effects on an Adaptive Lotka-Volterra System” in “Mathematics and Environment”, 113 – 120, 2003.

4. D.Lacitignola, A.LaNotte, “Results of laboratory experiments testing a stock market mathematical model with bifurcation phenomena” - Technical Report, 2002

3. D.Lacitignola, R.Antolini, “A Dynamical System Approach to Cardiac Atrial Fibrillation” - Technical Report, 2001

2. D.Lacitignola, R.Antolini, “Dynamics of Cardiac Atrial Fibrillation II ” - Abst. Proceedings in INFMeeting, Genova 2000

1. D.Lacitignola, R.Antolini, “Dynamics of Cardiac Atrial Fibrillation” - Abst. Proceedings in INFMeeting, Catania 1999

[Ultima modifica: mercoledì 30 novembre 2016]